Monday, 19 April 2021

SET THEORY CLASS 11 NCERT EXERCISE QUESTION AND SOLUTION MATH

1: Write the following sets in the roster form.

(i) A = {x | x is a positive integer less than 10 and 2x – 1 is an odd number}

(ii) C = {x : x2 + 7x – 8 = 0, x ∈ R}


(i) 2x – 1 is always an odd number for all positive integral values of x since 2x is an even number.

In particular, 2x – 1 is an odd number for x = 1, 2

Q. 2: Write the following sets in roster form:

(i) A = {x : x is an integer and –3 ≤ x < 7}

(ii) B = {x : x is a natural number less than 6}


Q. 3: Given that N = {1, 2, 3, …, 100}, then

(i) Write the subset A of N, whose elements are odd numbers.

(ii) Write the subset B of N, whose elements are represented by x + 2, where x ∈ N.


Q. 4: Let X = {1, 2, 3, 4, 5, 6}. If n represent any member of X, express the following as sets:

(i) n ∈ X but 2n ∉ X

(ii) n + 5 = 8

(iii) n is greater than 4

Q. 5: Let U = {1, 2, 3, 4, 5, 6}, A = {2, 3} and B = {3, 4, 5}. Find A′, B′, A′ ∩ B′, A ∪ B and hence show that ( A ∪ B )′ = A′∩ B′.

Q. 6: Use the properties of sets to prove that for all the sets A and B, A – (A ∩ B) = A – B

Q. 7: Let U = {1, 2, 3, 4, 5, 6, 7}, A = {2, 4, 6}, B = {3, 5} and C = {1, 2, 4, 7}, find
(i) A′ ∪ (B ∩ C′) (ii) (B – A) ∪ (A – C)

Q. 8: In a class of 60 students, 23 play hockey, 15 play basketball,20 play cricket and 7 play hockey and basketball, 5 play cricket and basketball, 4 play hockey and cricket, 15 do not play any of the three games. Find
(i) How many play hockey, basketball and cricket
(ii) How many play hockey but not cricket
(iii) How many play hockey and cricket but not basketbal

Q. 9: Let U = {x : x ∈ N, x ≤ 9}; A = {x : x is an even number, 0 < x < 10}; B = {2, 3, 5, 7}. Write the set (A U B)’.

Q. 10: In a survey of 600 students in a school, 150 students were found to be drinking Tea and 225 drinking Coffee, 100 were drinking both Tea and Coffee. Find how many students were drinking neither Tea nor Coffee.

No comments:

Post a Comment