Tuesday, 13 April 2021

Linear programming problem class 12

Q1: Solve the following LPP graphically:

Maximise Z = 2x + 3y, subject to x + y ≤ 4, x ≥ 0, y ≥ 0

Q2. Solve the following linear programming problem graphically:

Minimise Z = 200 x + 500 y subject to the constraints:

x + 2y ≥ 10

3x + 4y ≤ 24

x ≥ 0, y ≥ 0

Q3.  A manufacturing company makes two types of television sets; one is black and white and the other is colour. The company has resources to make at most 300 sets a week. It takes Rs 1800 to make a black and white set and Rs 2700 to make a coloured set. The company can spend not more than Rs 648000 a week to make television sets. If it makes a profit of Rs 510 per black and white set and Rs 675 per coloured set, how many sets of each type should be produced so that the company has a maximum profit? Formulate this problem as a LPP given that the objective is to maximise the profit.

Q4. A dietician wishes to mix two types of foods in such a way that vitamin contents of the mixture contain atleast 8 units of vitamin A and 10 units of vitamin C. Food ‘I’ contains 2 units/kg of vitamin A and 1 unit/kg of vitamin C. Food ‘II’ contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs Rs 50 per kg to purchase Food ‘I’ and Rs 70 per kg to purchase Food ‘II’. Formulate this problem as a linear programming problem to minimise the cost of such a mixture.

Q5. Consider the linear programming problem;
Maximise; Z = x +y , 2x + y – 3< 0, x – 2y + 1 < 0, y < 3, x < 0, y < 0
(i) Draw its feasible region.
(ii) Find the corner points of the feasible region.
(iii) Find the corner at which Z attains its maximum. (March – 2012)
Consider the LPP Minimise; Z = 200 k + 500y, x + 2y > 10, 3x + 4y < 24, x > 0, y > 0
(i) Draw the feasible region.
(ii) Find the co-ordinates of the comer points of the feasible region.
(iii) Solve the LPP. (May – 2012)

Q6. Consider the LPP
Maximise; Z = 5x + 3y
Subject to; 3x + 5y < 15, 5x + 2y < 10x, y > 0
(i) Draw the feasible region.
(ii) Find the corner points of the feasible region.
(iii) Find the corner at which Z attains its maximum. (March – 2013)

Q7. Consider the linear programming problem: Minimize Z = 3x + 9y Subject to the constraints: x + 3y < 60 x + y > 10, x < y, x > 0, y > 0
(i) Draw its feasible region.
(ii) Find the vertices of the feasible region
(iii) Find the minimum value of Z subject to the given constraints. (March-2014, MAY-2016) NCERT example 3

Q8.  Consider the linear inequalities 2x + 3y < 6; 2x + y < 4; x, y < 0
(a) Mark the feasible region.
(b) Maximise the function z = 4x + 5y subject to the given constraints. (March – 2014)

Q9. Consider the linear programming problem: Minimise Z = 4x + 4y Subject to x + 2y < 8; 3x + 2y < 12x, y<0
(a) Mark its feasible region.
(b) Find the comer points of the feasible region.
(c) Find the corner at which Z attain its minimum. (May – 2014)

Q10. Consider the linear programming problem: Maximum z = 4x + y
Subject to constraints: x + y < 50, 3x + y < 9x, y < 0
(a) Draw the feasible region
(b) Find the corner points of the feasible region
(c) Find the corner at which ‘z’ aftains its maximum value. (May – 2015)

Q11. Consider the LPP
Maximise z = 3x + 2y
Subject to the constraints: x + 2y < 10, 3x + y < 15; x, y < 0
(a) Draw its feasible region
(b) Find the corner points of the feasible region
(c) Find the maximum value of Z. (March – 2016)

Q12. Consider the linear programming problem: Maximum z = 50x + 40y
Subject to constraints:
x + 2y < 10; 3x + 4y < 24; x, y < 0
(i) Draw the feasible region
(ii) Find the comer points of the feasible region
(iii) Find the maximum value of z. (March – 2017)

Q13.  A  furniture dealer sells only tables and chairs. He has Rs. 12,000 to invest and a space to store 90 pieces. A table costs him Rs. 400 and a chair Rs. 100. He can sell a table at a profit of Rs. 75 and a chair at a profit of Rs. 25. Assume that he can sell all the items. The dealer wants to get maximum profit.
(i) By defining suitable variables, write the objective function.
(ii) Write the constraints.
(iii) Maximise the objective function graphically. (March – 2010)

Q14. A company produces two types of cricket balls A and B. The production time of one ball of type B is double the type A (time in units). The company has the time to produce a maximum of 2000 balls per day. The supply of raw materials is sufficient for the production of 1500 balls (both A and B) per day. The company wants to make maximum profit by making profit of Rs. 3 from a ball of type A and Rs. 5 from type B. Then,
(i) By defining suitable variables write the objective function.
(ii) Write the constraints.
(iii) How many balls should be produced in each type per day in order to get maximum profit? (May – 2010)

Q15. 

No comments:

Post a Comment